
– 1 –

Counting
Chris Piech
CS 109

Lecture Notes #1
Sept 24, 2018

Based on a handout by Mehran Sahami with examples by Peter Norvig

Although you may have thought you had a pretty good grasp on the notion of counting at the age of
three, it turns out that you had to wait until now to learn how to really count. Aren’t you glad you
took this class now?! But seriously, below we present some properties related to counting which
you may find helpful in the future.

Counting is important in the world of computer science for a few reasons. In order to understand
probability on a fundamental level, it is useful to first understand counting. Moreover, while
computers are fast, some problems require so much work that they would take an unreasonable
amount of time to complete. We can use counting theory to reason about complexity.

1 Sum Rule

Sum Rule of Counting
If the outcome of an experiment can either be one of m outcomes or one of n outcomes, where
none of the outcomes in the set of m outcomes is the same as the any of the outcomes in the set
of n outcomes, then there are m + n possible outcomes of the experiment.

Rewritten using set notation, the Sum Rule states that if the outcomes of an experiment can either
be drawn from set A or set B, where |A| = m and |B | = n, and A ∩ B = ∅, then the number of
outcomes of the experiment is |A| + |B | = m + n.

Example 1
Problem: You are running an on-line social networking application which has its distributed
servers housed in two different data centers, one in San Francisco and the other in Boston. The San
Francisco data center has 100 servers in it and the Boston data center has 50 servers in it. If a server
request is sent to the application, how large is the set of servers it may get routed to?

Solution: Since the request can be sent to either of the two data centers and none of the machines
in either data center are the same, the Sum Rule of Counting applies. Using this rule, we know that
the request could potentially be routed to any of the 150 (= 100 + 50) servers.

– 2 –

2 Product Rule

Product Rule of Counting
If an experiment has two parts, where the first part can result in one of m outcomes and the
second part can result in one of n outcomes regardless of the outcome of the first part, then the
total number of outcomes for the experiment is m · n.

Rewritten using set notation, the Product Rule states that if an experiment with two parts has an
outcome from set A in the first part, where |A| = m, and an outcome from set B in the second part
(regardless of the outcome of the first part), where |B | = n, then the total number of outcomes of
the experiment is |A| |B | = mn.

Example 2
Problem: Two 6-sided dice, with faces numbered 1 through 6, are rolled. How many possible
outcomes of the roll are there?

Solution: Note that we are not concerned with the total value of the two dice, but rather the set of
all explicit outcomes of the rolls. Since the first die1 can come up with 6 possible values and the
second die similarly can have 6 possible values (regardless of what appeared on the first die), the
total number of potential outcomes is 36 (= 6 * 6). These possible outcomes are explicitly listed
below as a series of pairs, denoting the values rolled on the pair of dice:

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

Example 3
Problem: Consider a hash table with 100 buckets. Two arbitrary strings are independently hashed
and added to the table. How many possible ways are there for the strings to be stored in the table?

Solution: Each string can be hashed to one of 100 buckets. Since the results of hashing the first
string do not impact the hash of the second, there are 100 * 100 = 10,000 ways that the two strings
may be stored in the hash table.

1“die” is the singular form of the word “dice” (which is the plural form).

– 3 –

Example 4: Unique configurations of Go
The number of atoms in the observable universe is about 10 to the 80th power (1080). This measure
is frequently used by computer scientists as a canonical really big number. There certainly are a lot
of atoms in the universe. As a leading expert said,

“Space is big. Really big. You just won’t believe how vastly, hugely, mind-bogglingly
big it is. I mean, you may think it’s a long way down the road to the chemist, but that’s
just peanuts to space." - Douglas Adams

This number is often used to demonstrate tasks that computers will never be able to solve. Problems
can quickly grow to such an absurd size through the product rule of counting. For example, lets
say we wanted to write an AI algorithm to play the game of Go, and we need to store each possible
board configuration. How many boards might we have to store?

A Go board has 19 × 19 points where a user can place a stone. Each of the points can be in one
of three states: empty, occupied by black or occupied by white. By the product rule of counting,
we can compute the number of unique board configurations. Each board point is a unique choice
where you can decide to have one of the three options in the set {Black, White, No Stone} so there
are 3(19×19) ≈ 10172 possible board configurations. It turns out “only" about 10170 of those positions
are legal. That is about the square of the number of atoms in the universe. In other-words: if there
was another universe of atoms for every single atom, only then would there be as many atoms in
the universe as there are unique configurations of a Go board. Not even the snazziest datastructure
can hold that many configurations.

Example: The Number of Digital Pictures
There is an art project to display every possible picture. Surely that would take a long time, because
there must be many possible pictures. But how many? We will assume the color model known as
True Color, in which each pixel can be one of 224 ≈ 17 million distinct colors.

How many distinct pictures can you generate from (a) a digital camera shown with 12 million
pixels, (b) a grid with 300 pixels, and (c) a grid with just 12 pixels?

Answer: An array of n pixels produces (17 million)n different pictures. (17 million)12 ≈ 1086, so the
tiny 12-pixel grid produces a million times more pictures than the number of atoms in the universe!
How about the 300 pixel array? It can produce 102167 pictures. You may think the number of atoms

– 4 –

in the universe is big, but that’s just peanuts to the number of pictures in a 300-pixel array. And
12M pixels? 1086696638 pictures.

So the number of possible pictures is really, really, really big. The crucial idea is, that as a number
of physical things, 1080 is a really big number. But when you start applying the product rule many
times, 1080 is a rather small number. It doesn’t take a universe of product rules to get up to 1080

outcomes.

Example 5: Leveraging Exponential Growth
Let’s take a moment to talk about how the product rule of counting can help! Most logrithmic time
algorithms leverage this principle.

Problem: You need to simulate 10 million unique examples of student solutions to Breakout
for a machine learning algorithm. You can generate a single example by composing a chain of
independent decisions. How many binary decisions (two outcomes) do you have to encode in order
to describe 10 million examples?

Solution: Using the product rule, the total number of unique outcomes is going to be 2 multiplied
by itself n times where n is the number of binary decisions. to get 10 million outcomes we want to
chose n such that 10, 000, 000 = 2n. We only need to encode n = 24 decisions.

3 The Inclusion-Exclusion Principle

Inclusion-Exclusion Principle:
If the outcome of an experiment can either be drawn from set A or set B, and sets A and B may
potentially overlap (i.e., it is not guaranteed that A ∩ B = ∅), then the number of outcomes of
the experiment is |A ∪ B | = |A| + |B | − |A ∩ B |.

Note that the Inclusion-Exclusion Principle generalizes the Sum Rule of Counting for arbitrary sets
A and B. In the case where A ∩ B = ∅, the Inclusion-Exclusion Principle gives the same result as
the Sum Rule of Counting since |∅| = 0.

The Inclusion-Exclusion principle helps to make sure we aren’t counting any element more than
once. If you over-count, then you have to subtract off the number of elements that were double
counted.

– 5 –

Example 6
Problem: An 8-bit string (one byte) is sent over a network. The valid set of strings recognized by
the receiver must either start with 01 or end with 10. How many such strings are there?

Solution: The potential bit strings that match the receiver’s criteria can either be the 64 strings that
start with 01 (since that last 6 bits are left unspecified, allowing for 26 = 64 possibilities) or the 64
strings that end with 10 (since the first 6 bits are unspecified). Of course, these two sets overlap,
since strings that start with 01 and end with 10 are in both sets. There are 24 = 16 such strings
(since the middle 4 bits can be arbitrary). Casting this description into corresponding set notation,
we have: |A| = 64, |B | = 64, and |A ∩ B | = 16, so by the Inclusion-Exclusion Principle, there are
64 + 64 − 16 = 112 strings that match the specified receiver’s criteria.

4 The Pigeonhole Principle
Before we start putting pigeons in holes, let’s go over Floor and Ceiling, two handy functions. Their
names sound so much neater than “rounding down” and “rounding up”, and they are well-defined
on negative numbers too. Bonus.

Floor function: The floor function assigns to the real number x the largest integer that is less
than or equal to x. The floor function applied to x is denoted bxc.

Ceiling function: The ceiling function assigns to the real number x the smallest integer that is
greater than or equal to x. The floor function applied to x is denoted dxe.

Here are a few examples:

b1/2c = 0 b−1/2c = −1 b2.9c = 2 b8.0c = 8
d1/2e = 1 d−1/2e = 0 d2.9e = 3 d8.0e = 8

Now that you know floors and ceilings, you are ready for the Pigeonhole Principle.

Basic Pigeonhole Principle: For positive integers m and n, if m objects are placed in n buckets,
where m > n, then at least one bucket must contain at least two objects.

In a more general form, this principle can be stated as:

General Pigeonhole Principle: For positive integers m and n, if m objects are placed in n
buckets, then at least one bucket must contain at least dm/ne objects.

Note that the generalized form does not require the constraint that m > n, since in the case where
m ≤ n, we have dm/ne = 1, and it trivially holds that at least one bucket will contain at least one
object.

– 6 –

Example 7
Problem: Consider a hash table with 100 buckets. 950 strings are hashed and added to the table.

a) Is it possible that a bucket in the table contains no entries?

b) Is it guaranteed that at least one bucket in the table contains at least two entries?

c) Is it guaranteed that at least one bucket in the table contains at least 10 entries?

d) Is it guaranteed that at least one bucket in the table contains at least 11 entries?

Solution:

a) Yes. As one example, it is possible (albeit very improbable) that all 950 strings get hashed to
the same bucket (say bucket 0). In this case bucket 1 would have no entries.

b) Yes. Since, 950 objects are placed in 100 buckets and 950 > 100, by the Basic Pigeonhole
Principle, it follows that at least one bucket must contain at least two entries.

c) Yes. Since, 950 objects are placed in 100 buckets and d950/100e = d9.5e = 10, by the
General Pigeonhole Principle, it follows that at least one bucket must contain at least 10
entries.

d) No. As one example, consider the case where the first 50 bucket each contain 10 entries and
the second 50 buckets each contain 9 entries. This accounts for all 950 entries (50 * 10 + 50
* 9 = 950), but there is no bucket that contains 11 entries in the hash table.

Bibliography
For additional information on counting, you can consult a good discrete mathematics or probability
textbook. Some of the discussion above is based on the treatment in:

K. Rosen, Discrete Mathematics and its Applications, 6th Ed., New York: McGraw-Hill, 2007.

The examples for the size of the universe are from Peter Norvig.

	Sum Rule
	Product Rule
	The Inclusion-Exclusion Principle
	The Pigeonhole Principle

